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1 Introduction

For the past 20 years, U.S. agricultural and energy policy embraced biofuels as an effective

tool to augment domestic energy production and raise demand for farm products, particularly

grains and oilseeds. A substantial body of empirical evidence details how corn and soybean

prices indeed increased in response to this government-facilitated demand for biofuels (see,

e.g., Wright, 2014 & de Gorter et al., 2015). These policies raised the income of crop

producers and also linked crop commodities with energy production. For instance, the most

obvious effect of government support for biofuels is that Americans now pour about 36% of

the U.S. corn crop into their gasoline tanks (USDA, 2021). In their seminal work, Carter

et al. (2017) estimate how biofuel policy initiatives increased the price of corn by 31% from

2006 through 2014.

On the other hand, virtually no academic attention is paid to the downstream impacts

of biofuel policies, especially with regard to livestock producers who compete with biofuel

manufacturers for inputs. We investigate this question using a similar framework to the one

developed by Carter et al. to understand the dynamics of U.S. biofuel policies and their

effects on beef herd size and profitability. We begin by developing a structural model of the

U.S. herd size consistent with individual cattle producer behavior. This allows us to test how

producers respond to changes in the causal relationships between feed inputs, energy, and

livestock production. Specifically, we argue the corn price increase in response to ethanol

demand and energy price shocks contributed significantly to the dramatic reduction in the

U.S. herd size over the last decade. Our results indicate that cattle producers respond to

sudden rises in corn–but also energy–prices by selling off a portion of their herd. In particular,

our results suggest, when oil prices suddenly increase, beef producers reduce their herds,

however, higher oil prices yields higher demand for ethanol and the corn to manufacturer it,

which increases the cost of beef production and leads to further herd reductions. We find
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also that cattle producer profitability declined following the implementation of major biofuel

policy initiatives.

We analyze the contribution of U.S. biofuel policy on the evolving U.S. beef herd size by

describing a theoretical model of beef producer choice. We then determine the counterfactual

(i.e. no VEETC, RFS, or MTBE ban i.e. business-as-usual) time series for herd size. Finally,

we search for structural breaks in the beef herd series, further investigating, in particular,

those breaks which coincide with significant changes in U.S. biofuel policy.

1.1 Brief Overview of U.S. Biofuel Policy

The origins of biofuel policy in the United States traces to the Energy Tax Act of 1978,

which provided a tax exemption for ethanol fuel blends at 100% of the gasoline tax (Kesan et

al., 2012). Congress expanded that support with the passage of the Clean Air Act (CAA) of

1990 followed by the Energy Policy Act of 1992, appropriating resources towards research into

the production and commercialization of alternative fuels. Congress continued this policy

initiative with a series of reforms in the early 2000s (FAO, 2008), addressing commercial fuel

blending, particularly with regard to Methyl-tert-butyl ether (MTBE). MTBE raises octane

levels in gasoline and reduces fuel emissions, however it can also leach into groundwater and

cause serious health outcomes. In response, in 2001 California announced a ban on MTBE.

In 2003, California, the nation’s largest commercial vehicle market phased out MTBE in

favor of ethanol (McCarthy and Tiemann, 2006). Other states like New York, Connecticut,

and Vermont followed and placed restrictions on the use of MTBE, resulting in a significant

decline in the demand for MTBE as a fuel oxygenate and consequent increase in the demand

for ethanol as a substitute blending agent (Duffield et al., 2015). Just a few years later,

Congress decided to intervene directly in the renewable energy market by mandating biofuel

production and adoption.

The American Jobs Act of 2004 introduced the Volumetric Ethanol Excise Tax Credit
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(VEETC), a tax credit of 51 cents per gallon of ethanol for commercial sellers. In 2005,

Congress enacted the Renewable Fuel Standard (RFS-1). RFS-1 required 4 billion gallons

of renewable fuel by 2006. In 2007, Congress expanded the mandate of the RFS-1 with

the passage of the Energy Independence and Security Act of 2007, which stated that by

2009 domestic refiners must blend the fuel that Americans consume with 9 billion gallons

of ethanol, with scheduled yearly increases to a 36 billion-gallon target in 2022 (Brown and

Brown, 2012). This expansion is known as the RFS-2 and it is the primary focus of this

analysis, since the RFS-1 mandates ethanol use at levels in compliance with the prior Clean

Air Act of 1990 at no instrumental increase (Yacobucci, 2012; Carter et al., 2017). Various

observers rationalize the government-imposed RFS and the RFS-2 mandates as pursuing

a variety of objectives, including reducing carbon emissions and limiting dependence on

foreign energy sources (Moschini, Cui and Lapan, 2012). However empirical support for

this consensus in the scientific community remains elusive. For example, Lark et al. (2022)

estimate that the land use changes involved to grow the corn required to meet the mandates

of the RFS-2 are more environmentally costly than burning un-blended gasoline.

1.2 Downstream Consequences

While the impacts of the RFS-2 on the environment and crop prices are well-documented,

the downstream impacts of biofuel policy is effectively unexplored in the literature, even

though feed (primarily corn) makes up approximately two-thirds of cattle production costs

(Lawrence et al., 2008; Holgrem and Feuz, 2015). Yet, industry advocacy groups routinely

express concerns about the additional costs imposed by biofuel policies. For example, the

National Cattlemen Beef Association (NCBA) filed three RFS volume waiver petitions to

request suspension of annual biofuel mandates on the basis of economic hardship (NCBA,

2012; Feinman, 2013). In each of these petitions, the NCBA consistently pointed to potential

herd reductions as a likely consequence of the RFS-1 and RFS-2. The petitions sought to ex-
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empt refiners from blend requirements, especially during natural disasters (such as drought)

since blending commercial fuels results in even higher feed costs. In 2008, Former Texas

Governor Rick Perry pursued a volume waiver, requesting a 50% reduction in mandated bio-

fuel volumes, arguing that the program’s unintended consequences will lead to real economic

harm to livestock producers and higher food prices (Schor 2008). In 2012, a coalition of live-

stock farmers petitioned the EPA to reduce mandated biofuel volumes, stating that, along

with extreme weather conditions, the RFS will lead to significant herd reduction across the

country (O’Malley and Searle, 2021). In addition, ten U.S. states submitted RFS waivers,

arguing that the program could lead to higher food costs and grain supply depletion. In

each instance, EPA did not grant a waiver, concluding that the impacts of the program

on livestock producers did not meet the definition of severe economic harm (NLR, 2012).

And in a recent book about the challenges facing the cattle industry, Peel (2021) argues the

adoption of ethanol mandates added to the cyclical contraction in the U.S. beef herd.

However, top-level federal officials continue to highlight the farm-level benefits of the

biofuels program to corn producers, while ignoring adverse downstream effects to livestock

producers. For example, in December 2021, Secretary of Agriculture Vilsack lauded the Bio-

fuel Producer Program (authorized by the Coronavirus Aid, Relief, and Economic Security

Act), which makes available $700 million in economic relief to the nation’s biofuel producers.

This policy enabled ethanol manufacturers to stay in business after the pandemic-induced

economic downturn, so that the added costs of ethanol production were not passed on to

gasoline refiners and ultimately American car owners. The program strengthened ethanol

producers and stimulated their demand for corn, while at the same time increasing compe-

tition for a major input to livestock production. Even more recently as the Russo-Ukraine

conflict developed in April 2022, the Biden Administration refused to grant blend waivers

to 35 refiners, arguing such initiatives are necessary to energy security and essential to the

profitability of both the farmer and rancher (USDA, 2021)–at best a questionable claim given
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that these policies raise the price of corn and the cost of production for ranchers.

In this article, we estimate the economic harm U.S. ethanol policy causes domestic cattle

producers along several dimensions. In particular, we analyze how biofuel policies link energy

prices and U.S. beef herd size, and how real returns to cattle producers fell permanently

following the implementation of RFS-1 & RFS-2. In the next section, we provide an overview

of the existing literature on the relationship between biofuel policy and food commodities.

In section 3, we offer background information on the cattle industry. Section 4 details our

data, theoretical model, and empirical framework. Section 5 presents our results. Section 6

concludes.

2 Relevant Literature

Carter et al. (2011) and de Gorter et al. (2015) attribute the doubling of food commod-

ity prices between 2008-2012 to the systemic changes in U.S. biofuel policies–specifically, the

MTBE ban, RFS-1, and RFS-2. However, it is important to note that there is some con-

tention surrounding the impact of biofuels on food commodity prices1. Nevertheless, several

studies in the literature identify biofuel policy as an important contributing factor among

many to the commodity price boom of the late 2000s.

Studies examining the relationship between food prices and the demand for biofuels

traditionally follow a general equilibrium or time series approach, but in general results are

consistent across both methods. We focus on the time series approach employed by Carter

et al. (2017) and Smith (2019) to analyze the impact of U.S. biofuel policy on livestock

markets. However, we briefly discuss both methods here.
1For example, others attributed the price boom to, e.g., increased demand for more resource-intensive

foods in rapidly-developing nations (von Braun, 2007), financial speculation (see, e.g., Reguly, 2008)—even
though the evidence supporting that view is–at best–mixed, and a combination of factors, including weather-
related production shortfalls (Condon et al., 2015), U.S. monetary policy, and a leveling-out of crude oil
production (Trostle, 2008).
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Several researchers employ computable general equilibrium models to demonstrate the

impacts of biofuel policies across the economy. For example, Chen and Khanna (2013) use

the BEPAM2 to analyze the contribution of the RFS and other complementary policies (the

VEETC and import tariffs) to corn and soybean prices along with sugarcane imports in the

United States relative to a counterfactual scenario with no government intervention in the

biofuel sector. They estimate a 4.7% increase in the corn price per billion gallon increase in

ethanol production. In addition, they find in the absence of sugarcane tariffs, implemented

to suppress competition with Brazilian sugarcane ethanol manufacturers, that 3.3 billion

liters of ethanol would have been imported. Hertel et al. (2010) use a different computable

general equilibrium model built upon the standard Global Trade Analysis Project (GTAP)

framework. They estimate a smaller effect of U.S. biofuel policies on the price of corn:

approximately 1.3% per billion gallons of ethanol produced. However, they also find that

acreage planted to coarse grains in the United States would rise by 10% as a result of biofuel

policy mandates, while forest and pastureland areas of the United States would decrease by

3.1%. Therefore, even under conservative estimates for corn price changes, ethanol expansion

under the RFS-2 has significant effects on land use in the United States. Lapan and Moschini

(2009) build a simplified two-country general equilibrium model, where the energy and food

sectors are linked. This competitive model assumes an upward sloping supply of corn with

multiple uses: feed, energy, food, and export. They show that an ethanol mandate yields

higher welfare than an ethanol subsidy. Cui et al. (2011) adapt and extend Lapan and

Moschini’s model to make it more suitable for simulating the consequences of alternative

policies. The extension recognizes that firms produce other products when they refine oil,

in addition to gasoline (such as fuel oil,jet fuel, and petroleum coke). The authors aggregate

all non-gasoline output into a single good called petroleum by-products. Consistent with

Chen and Khanna (2013), Cui et al. (2011) estimate that corn prices should rise by 3.75%
2Biofuel and Environmental Policy Analysis Model
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per billion gallons of ethanol produced. Moschini et al. (2017) build a multi-market model

of the U.S. supply of corn, soybeans, oil, incorporating domestic and rest-of-world demand

for food products and transportation fuels. They simulate their model under a no-RFS

scenario, 2022 RFS-2 scenario, and optimal (second-best) mandates scenario. Compared to

the no-RFS scenario, they find that the current 2022 RFS-2 mandates increase corn prices

by 3.6% per billion gallon of ethanol produced. At the low end, Gehlhar et al. (2010) found

in a general equilibrium analysis that for every billion gallons of ethanol produced the price

of corn will only rise by 0.4–0.7%. However, this report is focused on consumer welfare

impacts as they claim that the RFS-2 would impact food prices considerably less than it

would impact farm commodity prices in the long term (i.e. by mandate objectives of 2022).

The second method we address relies on the time series approach developed by Carter

et al. (2017). They develop a partially identified structural vector autoregression (SVAR)

model to estimate the effect of the RFS-2 on corn prices. Smith (2019) updates their model

for corn with data through the 2016-17 crop year, and also applies the model to soybeans and

wheat. This model rests on the fact the RFS-2 is a persistent rather than a transitory shock

to agricultural markets. This distinction is important because persistent shocks have longer-

lasting price effects than transitory shocks, and are signified by a structural break. Markets

for storable commodities can respond to a transitory shock, such as poor weather conditions,

by drawing down inventories, mitigating its effects. In contrast, inventories cannot insulate

market participants from a persistent shock. Carter et al. (2017) decompose the shock to

crop inventories and spot prices, owing to the increase in the demand for corn and soybeans,

by generating impulse response functions for corn and soy futures prices and inventories.

Their results show that inventory demand shocks increase futures prices. Their findings for

the impact of the RFS-2 aligns with the general equilibrium analysis results: they estimate

that every billion gallons of ethanol produced raises the price of corn by 5.6% (95% CI–

0.009, 0.17). To account for the short-term and long-term response to shocks, Carter et
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al. (2017) include in their model the convenience yield, allowing them to isolate RFS-2’s

persistent impact on agricultural commodities. Consistent with Carter et al. (2017), Smith

(2019) also accounts for convenience yield and estimates the increase to the corn price over

the life of the RFS-2 at approximately 30%.

3 Cattle Market Background

To facilitate our discussion, we provide an overview of the modern beef industry and offer

important definitions, including a typical timeline for the production process. We begin by

defining the set of production inputs along with a description of the production function for

cattle producers. We then illustrate input costs, focusing on feed costs, and the typical feed

input mix of producers. We conclude with an overview of the beef supply chain. Finally, for

context, we conclude this section with a brief summary of the beef cattle supply chain as

well as general trends in cattle markets over the last few decades.

The cattle production function is made up of equipment and infrastructure, weather

conditions, feed, supplemental nutrients, and veterinary resources. Equipment and infras-

tructure includes, for example, fencing, corrals for cattle handling, and machines for forage

production and transporting cattle to market. Weather conditions affect cattle performance,

e.g., extreme heat reduces an animal’s ability to gain weight and leads to heat stress. Vet-

erinary services ensure herd health and effective reproduction. Successful production of beef

cattle necessitates good quality feed. In fact, feed is the principle component of all models

of the production function for cattle (Heady et al., 1963; Lalman et al., 1993; Van Amburgh

et al., 2008; Holgrem and Feuz, 2015). Specific feed rations depend on the type of operation

and the time of the year. For example, in the winter, producers might opt for a low-energy

ration composed of primarily fibrous hay supplemented with more high-energy silage3 and
3“Silage” refers to grasses grown for forage and harvested at a relatively high moisture level; the most

common types of silage include alfalfa and corn in the United States.
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essential minerals (e.g. calcium, phosphorus, and potassium). In contrast, in the spring and

summer, producers may adopt a more high-energy diet composed of feed grains to promote

rapid weight gain in the herd. In terms of total digestible nutrients4 (TDN), up to 70% of

such a feed mix would come from feed grains (Lalman et. al., 1993; NRC, 2000) like corn,

sorghum, barley, and oats. In the United States, corn is far and away the primary choice

of producers, accounting for more than 95% of total feed grain production and use USDA

(2020). Byproducts of ethanol production (i.e. distillers grain) can be substituted for feed

grain, and are primarily used in the Midwest and Great Plains5

Feed represents the primary cost for a beef producer, accounting for 60% of the cost of

production (Lawrence et al., 2008; Holgrem and Feuz, 2015). Therefore, corn price changes

play a dominant role in the cost of beef production. In fact, Tonsor and Mollohan (2017)

show that the corn price is inversely related to cattle margins: as the price of corn increases,

returns to cattle producers decrease. As a result, the cattle market is highly susceptible to

corn price volatility. Figure 1 shows the real farm price of corn from 1983-2022. The period of

corn price doubling is clearly visible, and while it does stabilize around $5.00/bushel (in real

terms) toward the end of the 2010s, it remains well above prices observed during the 1980s

and 1990s. Compounding the feed input cost rise is the significant increase in the cost of

crude oil over the past 40 years. Figure 1 also shows the West Texas Intermediate (WTI) real

futures price over the same time period. For the first half of the period, oil prices remained

relatively stable below $50 dollars a barrel. However, beginning in the early 2000s, oil prices

spiked and have remained elevated compared to historical levels. A direct effect of this trend

is the higher cost of transportation for beef producers, packers, and distributors. In addition,

the long beef cattle production cycle6 (relative to commodity crops, for example) increases
4“Digestible nutrients” is the proportion of feed that an animal can metabolize into their system
5Cottonseed, a byproduct of the ginning process for cotton, can also serve as a feed grain substitute

(perhaps in times of high grain prices) in the southern United States, since it is an adequate source of
protein.

6The natural cattle cycle, a process in which the size of the national beef herd—including all cattle and
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the role of uncertainty with respect to investment, and when coupled with higher feed and

transportation costs places pressure on the domestic herd size. The second panel of figure 1

shows that, since the late 1970s, the U.S. beef herd size fell from approximately 39 million

head to a 60-year low in 2014 of just over 29 million head. Since 2014, the herd size grew

slightly before falling again. In fact, the latest Cattle Inventory Report for January 2022

shows that the beef cow herd totaled 30.1 million head, down 2% from a year earlier and the

lowest since 2014-15. Polansek (2022) attributes this trend to adverse weather conditions,

reducing the amount of pasture for grazing and driving up the price of feed grain. However,

we posit that increased competition in corn demand from ethanol production contributed

significantly to the reduction in the beef herd size over the last two cattle cycles.
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Figure 1: U.S. Beef Herd Size, Corn, and Crude Oil Prices 1983 - 2022
Source: CME 2022, Agricultural Marketing Service (AMS) 2022 & USDA Cattle Inventory Report 2022

calves—increases and decreases over time. This typically lasts between 8 to 12 years, with the last full cycle
beginning in 2004. The herd size grew slightly over the next three years before increasing feed and energy
prices led the herd size contracting sharply to a record low in 2014 (USDA 2022).
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One sign of the disparate impacts of biofuels policy on upstream and downstream agricul-

tural producers is the difference in land price paths, which capitalize the value of production

according to economic theory (Doye and Brorsen, 2011). Figure 2 shows that while cropland

values nearly doubled in real terms sine the late-1990’s, pastureland values have increased

by a much smaller factor–just a few hundred dollars per acre. U.S. Government support for

agriculture, codified every five years in the Farm Bill, provides crop producers with signifi-

cant support through subsidized crop and revenue insurance programs, but little in the way

of support for livestock producers. For example, the 2018 Farm Bill allocates almost $70

billion to crop insurance and commodity risk protection programs (CRS, 2019). Livestock

producers do not receive the same level of support under the legislation. Even ad hoc pro-

grams, such as the direct assistance to producers to remunerate them for trade war damages

is targeted to the producers of crops not livestock (Adjemian et al., 2021).
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Figure 2: U.S. Real Land Values 1997-2018
Source: NASS Land Asset Values Survey 2018
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4 Data and Methods

To examine the impact of U.S. biofuels policy on the cattle industry, we first develop a

theoretical model of herd supply. We then test this model following the vector autoregressive

(VAR) approach applied by Carter et al. (2017) to estimate the impact of government

support for ethanol on the U.S. beef herd size. We collect biannual (January and July)

herd data from the National Agricultural Statistics Service (NASS) for the U.S. beef herd

from 1983 to 2022. These data are available through the NASS Cattle Inventory Report7.

We match our herd data with the farm corn price published by the Agricultural Marketing

Service (AMS)8. For example, the Cattle Inventory Report is published at the first of the

month in January and July. Therefore, we take the AMS farm corn price published in March

the year prior for the January Cattle Inventory Report and November for the July report.

We do the same for the farm cattle price, which is an aggregated price for beef cattle. For

energy prices, we use the front-month closing price for West Texas Intermediate (WTI) crude

oil. To match our energy price series consistently with our observations for corn, cattle, and

herd size, we average the real WTI futures price for March prior to each January cattle

report, and then the average real futures price series in November for the July cattle report.

By matching this way, we generate 74 observations for the time period July 1983 to January

2022. The purpose of the 8 month lag in determining our price series is biological and is

similar to the agronomic reasoning used by Carter et al. (2017). Those authors apply a

one-year lag to reflect the cropping year of corn, September to August. Since it takes on

average 8 months to “finish” cattle, i.e. bring them to market weight, livestock producers

determine marketing decisions for December-January the prior March (or November for July

decisions). These decisions consist of the amount and type of feed purchased for finishing
7The report was suspended in 2013 and 2016 due to sequestration
8All prices are deflated using the Producer Price Index (PPI) base year 2010, Federal Reserve Economic

Data (FRED) 2022
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dependent on the herd size chosen by the producer.

Table 1 presents summary statistics for our relevant series. From 1983 to 2022, the

average size of the U.S. beef herd was 33 million head, which is down from the early 1970s

high of about 40 million. The corn price experienced dramatic changes over this same time

period, rising to almost $ 11.00 per bushel (in real terms), following the RFS-2. Crude oil

follows a similar trend, rising in the early 2000s to a record high in 2008-09 before collapsing

during the Great Recession only to bounce back in the 2010s. Live Cattle, however, remains

steady relative to the other series with short cycles of highs and lows throughout the 2000s

and 2010s.

Table 1: Summary Statistics: Herd Size Model

Statistic N Mean St. Dev.
REA 78 0.581 58.005
WTI $/barrel 78 45.916 20.230
Farm Corn Price $/bushel 78 3.488 0.882
Farm Cattle Price $/cwt 78 99.641 14.009
Herd Size 10000 head 76 3,302 188

Source: NASS 2022, AMS 2022, & CME 2022

Empirical models of structural shocks to inter-related markets originate from measures

of economic activity in the general economy. We use as a measure of aggregate demand,

the REA, or real economic activity, first developed by Kilian (2009). This index is based on

dry-cargo shipping rates and is designed to capture changes in global demand for industrial

products. The REA is a direct measure of global economic activity not reliant on exchange-

rate weighting, aggregates across countries, and incorporates variation in the composition of

real output (Carter et al., 2017). This fundamental measure captures the shock to economic

activity generated, for example, by the adoption of a mandate for ethanol consumption.

Subsequent work by Hamilton (2021) questions the use of REA in analysis, since when con-
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structing the series Kilian takes a double log, making the choice of initializing value critical

for the resulting series. As such, Kilian (2019) updates the index removing this double log.

We use this updated measure in our analysis. Hamilton (2021) proposes an alternative global

real economic activity based on monthly world industrial production from the Organization

of Economic Co-operation and Development (OECD)9. Compared to the REA, the indus-

trial production data– according to Hamilton–implies that the Great Recession was clearly

the most significant downturn in global real activity during this period. For robustness, we

include our model results using the WPI as our measure of real aggregate demand in the

appendix.

Table 2 presents the summary statistics for monthly cattle market returns from 2000 to

2020. Feeding cost of gain10 is reported in the Focus in Feedlots newsletter11 produced by

Kansas State University (KSU). Feeder cattle prices for Kansas are reported by the Livestock

Marketing Information Center (LMIC)12. Feeder cattle are cattle on feed that have yet to

reach marketable weight. Their prices are reported for different weight categories (e.g., 600

to 700 lbs., 700 to 800 lbs., and 800 to 900 lbs.). We use this information along with feeder

weight reported in the Focus on Feedlots newsletter, Kansas State University, to compute the

feeder price for each month. Fed (or finished) cattle prices for steers in Kansas are reported

by the LMIC. The ”price ratio” is the feeder to fed cattle price ratio. Again, feeder cattle are

distinct from fed cattle in that fed cattle have reached maturity (approx. 1100 lbs.) and are

ready for market, while feeder cattle are still maturing but can be put on feed in feedlots for

finishing. Feed conversion is also reported in the Focus on Feedlots newsletter, Kansas State

University, where the ”feed conversion rate” is defined as the amount of feed input divided

by the total mass of the fed cow/steer at finishing or its dressed (post-slaughtering) weight.
9The monthly world production index (WPI) includes the OECD plus six major countries: Brazil, China,

India, Indonesia, the Russian Federation, and South Africa.
10An industry efficiency measure defined as the total feed cost of grain divided by total weight gain in lbs.
11Focus on Feedlots Newsletters
12LMIC website
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In addition, the newsletter reports an inventory price for corn and alfalfa, as averaged over

the previous five months–an appropriate measure for the feed cost of production. Simulated

net returns per head of cattle producers are computed by subtracting feeding cost of gain

and interest cost from gross returns (i.e. number of cattle marketed multiplied by the price).

According to table 2, the average net returns are negative, but note that cattle sales are

not constant over time. Sale weight, feeder weight, feeding cost of gain, and days on feed

(for interest cost computation) are from the Focus on Feedlots newsletter, Kansas State

University. We use the operating interest rate from the Kansas City Federal Reserve, a

readily available interest rate for short-term assets.

Table 2: Summary Statistics: Net Returns and Feed Costs on Cattle

Statistic N Mean St. Dev.
Net Returns $/head 252 −35.26 131
Feed Cost of Gain $/cwt 252 74.73 20.63
Price Ratio 252 1.20 0.13
Feed Conversion 252 6.04 0.21
Corn Price $/bushel 252 4.00 1.51
Alfalfa Price $/ton 252 133 45.84
Feeder Price $/cwt 252 124 35.60
Fed Price $/cwt 252 103 24.78
Source: LMIC & KSU 2020
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Next, we investigate whether the observed variation (and decline) in beef herd size is

attributable to changes in U.S. biofuels policy by (1) deriving a theoretical model of herd

supply and demand consistent with the individual producer’s choice of herd size; (2) ana-

lyzing the counterfactual (i.e. no VEETC, RFS, or MTBE ban i.e. business-as-usual) time

series for herd size; and (3) searching for structural breaks in the beef herd series, especially

in and around the critical dates of 2001, 2004, 2005, and 2008. After identifying structural

breaks in herd size, we split our sample to estimate the relationship between beef markets

and energy before and after each policy change. We implement the procedure described in

Bai and Perron (2003) for simultaneous estimation of multiple breakpoints. The distribution

function used for the confidence intervals for the breakpoints is given in Bai (1997), and the

objective is minimize the triangular residual sum of squares (RSS) matrix to determine an

optimal break segment. We then use the same procedure to search for breaks in the net

returns to feed and fed cattle producer data.

4.1 Theoretical Model

Jarvis (1974) first developed a theoretical model of U.S. herd size, treating beef cows

as capital goods that follow a stock accumulation path. However, his model does not in-

corporate the cyclical expansions and contractions observed in the herd size, historically.

Consequently, Rosen et al. (1994) develops a dynamic model of the cattle cycles observed

in figure 1. Nerlove and Fornari (1998) adapt Rosen’s model to account for the change

in the structure of the cattle supply chain, specifically, the increased industrialization (e.g.

feedlots) used in finishing cattle and the concentration of firms in slaughtering and packing.

Most notably, Aadland (2004) models a 10-year cattle cycle, accounting for the discounted

returns of marketing a cow in year t and the cost of delaying to year t + 1. Recent em-

pirical applications of Aadland’s model include Yuhan and Shonkwiler (2016), who use a

feeder/corn price ratio to estimate a VAR model of herd size as a function of market returns
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and input prices. Their results suggest that the feeder/corn price ratio may Granger cause

herd size. However, this is an incomplete understanding, since their model assumes feed

grain price shocks are exogenous, neglecting the interrelationship between ethanol demand

and corn price volatility. As a result, we expand upon this approach by modeling changes

in the price of corn and farm-gate cattle prices as a linked response to changes in the energy

market.

Our theoretical model of herd size is derived from Aadland (2004), though adapted to

account for the recent structural changes in the U.S. beef market. The cattle producer’s

decision problem is to maximize the discounted value of their operation over an infinite

horizon subject to initial endowment k
(j)
0 , where j = 0, ..., m is the number of females of

age j on the farm. The objective of the producer is to maximize the stream of discounted

profits, πt, by choosing a series of cull rates. And, the total breeding stock for the herd at

time t is measured as the sum of all females of age j = 2, ..., m: bt = k
(2)
t + · · · + k

(m)
t . To

further specify female stock dynamics, we let the number of female calves be proportional

to the breeding stock in the previous period. That is we set the proportionality coefficient

as 0.5θ, where 0.5 indicates half the calf crop is female and θ is the successful birthing rate.

Formally, the producer’s objective is:

Max Et

∞∑
s=0

βsπt+s

where β is the discount factor and

πt =
m∑

j=0
p

(j)
t α

(j)
t (1 − δj)k(j)

t − wt

m∑
j=1

k
(j)
t

(1)

k
(j)
t is the total stock of females of age j on the farm at time t; δj is the mortality rate of

females in each age cohort; the producer’s choice variable, α
(j)
t , is the cull rate (% of females

marketed from that age cohort); and m is the final productive year for each cow where all

cows are assumed dead at m + 1. In addition, p
(j)
t is the live cattle cash price of an animal
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at age j. The law of motion by which each age cohort of females evolves is given by:

k
(j+1)
t+1 = (1 − δj)(1 − α

(j)
t )k(j)

t (2)

Typically, the cost function of the producer is assumed to follow a first-order autoregressive

AR(1) process:

wt = ϕ0 + ϕ1wt−1 + ϵw,t (3)

We assume that ϵw,t is i.i.d. with mean 0 and variance σ2
w. and further decompose ϵw,t into

the following linear combination:

ϵw,t = ϵe,t + ϵc,t + ϵb,t (4)

{ϵe,t; ϵc,t; ϵb,t} represent three observable shocks that drive a producer’s herd size decision:

ϵe,t is a shock to energy production in time t; ϵc,t is the shock to the demand for corn; and

ϵb,t is the shock to the farm price of beef. We assume these shocks are autocorrelated, and

specify them as first-order Markovian process with i.i.d. innovations. These shocks capture

changes in the expectations about the future cost of holding cattle of any age until the next

time period t+1, and thus are independent of current supply and demand conditions carried

from the expectations realized by E[wt]. Now, using the conditional expectation property of

our Markovian assumption, we can apply the framework developed by Carter et al. (2017).

Therefore, the equation for the demand of holding cattle at any age j until t + 1 in terms of

the futures price is:

Ft,t+1 = g(k(j)
t , ϵe,t, ϵc,t, ϵb,t) (5)

Intertemporal accounting requires that the difference in the stock of animals in time t + 1

and t, accounting for culled and attrition rates, is the supply of cattle at any age j held from
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the market. In terms of the live cattle cash price, this supply function is:

p
(j)
t = h(∆k

(j)
t , Ft−1,t, ϵet, ϵct, ϵbt) (6)

Before we estimate the two functions in equations (5) and (6), we first add our measure of real

aggregate demand, REA, to each equation and remove seasonality and trend components

from each variable. Written in log form, we then have:

Is
t = ln(h(∆k

(j)
t , Ft−1,t, ϵe,t, ϵc,t, ϵb,t)) (Herd Supply)

Id
t = ln(g(k(j)

t , ϵe,t, ϵc,t, ϵb,t) (Herd Demand)
(7)

Is
t represents the supply of cattle held over. It signifies the farm price that would induce the

market to supply ∆k
(j)
t in inventory for the next period t+1. We assume it is upward sloping

as producers are willing to expand their herd size in anticipation of higher live cattle prices.

Similarly, Id
t represents the demand for cattle inventory. It is also assumed to be downward

sloping, reflecting the fact that during periods of low feed costs producers will demand more

cattle to expand their herds. Solving (5) and (6) for the equilibrium price determines the

herd size in time period t. Next, we estimate herd supply and demand, adding REA in each

equation and removing seasonality and trend from each series. Taking a first-order expansion

around the log of each variable in (7), we obtain equations for herd supply and demand as

linear combinations:

Hs
t = δs + δs

REAREAt + δs
kk

(j)
t−1 + δs

fft−1 + δs
eϵe,t + δs

cϵc,t + δs
bϵb,t

Hd
t = δd + δd

REAREAt + δd
kk

(j)
t + δd

eϵe,t + δd
c ϵc,t + δd

b ϵb,t

(8)

To understand how the equilibrium herd size evolves, holding all else constant, suppose herd
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adjustments occur according to

dH

dt
= λ(Hd(ϵi) − Hs(ϵi)) ∀ i ∈ {b, c, e} (9)

where dH
dt

is the time derivative of the herd size, indicating the direction and speed of herd

changes, and λ is the speed of adjustment parameter. And, ϵi represents shocks to each

input price: corn, energy, and cattle. Next, we can determine the derivative of herd size

adjustments by differentiating (9) with respect to the input price shock i:

d
(

dH
dt

)
dϵi

= λ(δd
i − δs

i ) (10)

Under our log-linear framework, δd
i and δs

i represent elasticities, so that, following a price

shock, the equilibrium herd size evolves according to the relative values of the elasticities.

Since corn dominates the production function, we assume that the herd size supply elasticity

for corn is more inelastic than the herd demand elasticity, i.e. |δd
c | > δs

c . By applying our

downward sloping demand assumption, we hypothesize that a positive shock to corn prices

will yield a reduction in the herd size. The same logic applies to other input price shocks

associated with maintaining or expanding herd size such as cattle and energy prices. The

effects of shocks to REA are indeterminate, since they are dependent on how the changes

to economic activity impact downstream markets. Before we estimate the system in (8),

we first make a critical assumption that allows for identification. That is, we assume there

is no feedback from the cattle market to real aggregate demand within one year. This is

a reasonable assumption given the biological constraints involved with bringing cattle to

market (i.e. typically 18-24 months). Furthermore, it implies that REA is exogenous (at

least in the short run) so that shocks flow in one direction from REA→oil→corn→cattle

price→herd size. We next formally estimate our model, applying the framework of Carter

et al. (2017).
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4.2 Structural VAR Model

We estimate the impact of biofuel policies on real economic activity, beef herd size, and

corn, oil, and cattle prices with a recursive SVAR model. The benefit of the SVAR model

is that unlike a reduced-form VAR, it permits the imposition of restrictions to estimate the

causal relationships derived from our theoretical model of herd size. This approach extends

the work of Carter et al. (2017) and Smith (2019) to include cattle. Now, we use the

real farm price of corn at time t, pc
t , to capture shocks to corn demand for the livestock

producer, ϵc,t. Similarly, we use the real oil futures price, po
t , and the farm cattle price, pb

t

to reflect shocks to energy and beef markets: ϵe,t and ϵb,t. We define y, as a set of variables

yt = (REAt, po
t , pc

t , pb
t , Ht)′. The V AR(p) process is:

yt = A1yt−1 + · · · + Apyt−p + ut (11)

Ai are (5 × 5) coefficient matrices for i = 1, · · · , p lags and ut is 5-dimensional white-noise

process. We select an autoregressive lag order of p = 1 using the Schwarz information

Criterion, according to the procedure in Pfaff (2008). This procedure ensures we have set

of variables with no evidence of autocorrelation, according to the asymptotic portmanteau

test (test results are presented in Table 4 in the appendix). We can then define a structural

form model as:

Ayt = Ā1yt−1 + · · · + Āpyt−p + Bϵt (12)

ϵt are white-noise structural errors, and Āi are structural counterparts to the coefficients

in Equation (11). B is the structural coefficient matrix for the error term. This matrix

captures the impact of ”structural shocks” to our endogenous variables, or true independent

innovations rather than correlations among the variables in the model. And, ϵt is a vector

of structural shocks (ϵREA,t, ϵo,t, ϵc,t, ϵb,t, ϵH,t)′. We impose restrictions on B to simulate the
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impact of the structural shocks. Our restriction matrix B is:



b1,1 0 0 0 0

b2,1 b2,2 0 0 0

b3,1 b3,2 b3,3 0 0

b4,1 b4,2 b4,3 b4,4 0

b4,1 b4,2 b4,3 b4,4 b5,5


(13)

which implies oil prices (b2) impacts corn (b3) and cattle (b4) prices as well as beef herd size

(b5) contemporaneously; corn impacts only cattle prices and herd size, and oil prices at a

lag; cattle prices only impacts herd size, and oil and corn prices at a lag. These restrictions

allow model identification by the Cholesky decomposition (Sims, 1980; Sims et al., 1990).

Estimation then proceeds with OLS. They can also be viewed as a logical set of restrictions

given that 40% of the U.S. corn crop is used for ethanol production and the life-cycle of feed

cattle on market is approximately 2 years, much longer the growing season for corn. However,

it may also be that the corn and cattle prices, at least, are determined simultaneously (i.e.,

in the span of the six-month frequency of the data). Given the link between feed grains and

biofuels, it is also reasonable to assume that feed grain and energy prices are simultaneously

determined. Hence, these restrictions may be too strong and introduce simultaneity bias

into our estimates. As a result, we include as a robustness check results from an alternative

identification approach that imposes no restrictions.

5 Results

We find that positive crude oil and corn price shocks reduce the beef herd size persistently

for several years. In particular, our impulse response estimates imply that a 1% increase

in corn prices leads to a herd reduction of almost 1.56 million head in the U.S. Beef herd
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(90%–C.I.: -977,441, -2,153,433) for 10 periods or 5 years. Moreover, while a 1% increase

in the corn price is suggestive in figure 3, its effect is not significant at the 90% level.

Unsurprisingly, given its importance as the primary feed input, corn accounts for the largest

significant estimated effect on herd size. These results support the claim of the NCBA

and other livestock industry groups that beef herd reductions can result from government

intervention to promote the production and adoption of biofuels, if those policies raise the

price of feed.

5.1 Cholesky Decomposition

From our estimated coefficient matrix, we generate impulse response functions for the

causal interactions of interest. Since we take the log of our data and bootstrap the standard

errors for our coefficient estimates, we can interpret the resulting plots as pseudo-elasticities.

Our impulse responses indicate that oil shocks affect corn prices, as predicted. Specifically,

our results imply that a 1% increase in the price of oil results in a 0.233% increase in the farm

price of corn for almost 10 periods or 5 years (0.0530-0.414; 90%–CI). This is consistent with

the findings of Carter et al. (2017) and Smith (2019). And, it implies that an expanding

demand (or tight supply) for oil itself raises the cost of cattle production thereby keeping

downward pressure on herd size, since producers internalize a shock to oil prices as preceding

a shock to ethanol and corn prices in the future. The effect is that as the price of oil increases

due to a shock in economic activity we should observe a sudden reduction in the herd size,

which is further reduced by the increase in the price of corn as ethanol blenders increase

their demand for corn.
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Figure 3: Cholesky Impulse Response Functions, 1983-2022
Source: Author calculations based on data sourced from NASS and AMS 2022

Note: IRFs are generated from the estimated B matrix for 20 steps ahead, i.e. 20 six month increments or
10 years total. Light grey 95% Confidence bands and dark grey 68% Confidence bands are generated using
wild bootstrap method with 2000 runs. The analytical IRF estimate appears as the dark blue dotted line,

while the dashed purple and black lines represent the bootstrapped median and means respectively.
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5.2 Variance Decomposition

Forecast error variance decomposition (FEVD) is a fundamental part of structural anal-

ysis that involves “decomposing” the variance of the forecast error according to the source

of the exogenous shock. This is useful, because it demonstrates how important a shock is

in explaining the observed variation of the variables included in the model. In addition, the

FEVD shows how that importance changes over time. For example, some shocks may only

affect short-term variations, while others may cause longer-term effects. Figure 4 illustrates

our estimated FEVD for the U.S. beef herd.

1 2 3 4 5 6 7 8 9 10

Herd
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Corn

Oil

REA

FEVD for Herd

6 month periods

%
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0
0.
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Figure 4: FEVD for Herd 10 Steps Ahead
Source: Author calculations based on data sourced from NASS 2022

Note: Counterfactual constructed from Recursive Identification Results
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Figure 4 is based upon the impulse response coefficient matrices B and allows us to study

the contribution of variable (REAt, po
t , pc

t , pb
t , Ht) to the h-step forecast error variance of Ht.

If the orthogonalized impulse responses are divided by the variance of the forecast error

σ2
i (h), the result is a percentage figure. Formally:

σ2
i (h) =

h−1∑
n=0

(B2
ik,n + . . . + B2

iK,n) (14)

which can be written as:

σ2
i (h) =

K∑
j=1

(B2
ij,0 + . . . + B2

ij,h−1) (15)

Dividing the term (B2
kj,0 + . . . + B2

kj,h−1) by σ2
i (h) yields the FEVD in percentage terms.

Clearly, the contribution of herd size on itself is the largest source of variation (to be ex-

pected) in the short run. However, as we increase the number of steps ahead h, corn, oil, and

cattle prices grow in importance. This indicates that corn and oil prices have a significant

and persistent effect on the evolving path of the U.S. herd size. As a result, we propose that

the transition in the crude oil market from low to high prices may have coincided with a

structural break in the beef herd. Using the Bai-Perron procedure, we identify structural

breaks in the beef herd series at July 1988, January 1994, July 1999, and July 2008. Test

results are given in Table 3.
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Table 3: Structural Breaks
Beef Herd Series

Break Point 2.5% value 97.5% value
July 1988 Jan. 1988 July 1992
Jan. 1994 Jan. 1993 July 1995
July 1999 Jan.1999 July 2000
July 2008 July 2007 Jan. 2009

Ethanol Consumption Series

Break Point 2.5% value 97.5% value
July 2002 Jan. 2001 July 2003
Jan. 2008 July 2007 July 2008
July 2013 July 2012 July 2016

Notes: Computed using procedure described in Bai and Perron (2003)

These breaks coincide with significant events in the evolution of the U.S. beef herd. The

1988 break aligns with the start of the US-EU beef dispute over the use of hormones in

the production process. The E.U. ban on the import of hormone-treated beef motivated

the United States to retaliate with tariffs on E.U. imports (AFB, 2019). Subsequently, the

domestic herd size increased. The 1994 break corresponds to the peak of the beef cattle

price cycle, when feedlots swelled with an oversupply that resulted in a decline in the cattle

price (Hughes, 2001). The 1999 break represents the year California sought its first waiver

for the blending of MTBE in its commercial fuels, marking the beginning of the domestic

shift towards ethanol as the sole oxygenate used in the blending of commercial fuels. Finally,

the 2008 break directly corresponds to the implementation of RFS-2 legislation (Duffield et

al., 2015). From the standpoint of our analysis, the 1999 and 2008 break are of primary

interest. These dates relate to fundamental shifts in U.S. biofuel policies, while the two

previous breaks correspond to trade issues and market cycles for cattle. In addition, as

Table 3 shows, the 2007-08 break directly coincides with one of our calculated break dates

for the ethanol consumption series. This time period reflects the mandated expansion period

for ethanol demand as commercial blenders sought to comply with the RFS-2. Therefore, we

split our sample into two periods: (1) July 1983 to July 2000; (2) January 2001 to January
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2022. For robustness, we compare our results to intentionally splitting our sample in 2007,

coinciding with the adoption of the VEETC and immediately following the implementation of

RFS-1 and RFS-2. This latter split generates results (see figures 10 and 11 in the appendix)

consistent with our headline findings.

5.3 Sample Split: pre-and-post 2000

Figure 5 presents the impulse response functions generated for data in the period July

1983 to July 2000. Similar to figure 3, shocks to the crude oil prices, although suggestive,

do not translate to significant decline in herd size (at the 90% level) before the MTBE ban

and subsequent adoption of the RFS-1. In contrast, corn price shocks have negative impacts

(at the 68% level) on herd size even prior to the MTBE ban–as expected since corn is the

primary cost of feed.
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Figure 5: Cholesky Impulse Response Functions, 1983-2000
Source: Author calculations based on data sourced from NASS and AMS 2022

Note: IRFs are generated from the estimated B matrix for 20 steps ahead, i.e. 20 six month increments or
10 years total. Light Grey 95% Confidence bands and dark grey 68% Confidence bands are generated using
wild bootstrap method with 2000 runs. The analytical IRF estimate appears as the dark blue dotted line,

while the dashed purple and black lines represent the bootstrapped median and means respectively.

Figure 6 depicts the impulse response function for the post-2000 era. In contrast to

figure 5, shocks to crude oil prices generate a significant decline in the domestic herd size,

representing an important shift in energy and livestock markets. Now, a 1% increase in the

price of corn results in a reduction of the U.S. herd size of about 1.82 million head (90%–C.I.:

-1,234,358, -2,410,350) over 5 years. And, a 1% increase in the price of oil yields a 627,930

head reduction in the U.S. beef herd (90%–C.I.: -5,146, -1,250,716) over 5 years. Our results,
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especially with regard to corn and oil, are consistent with the impulse response functions

generated by of Carter et al. (2017) and Smith (2019). In figure 5, prior to the break, the

impulse response of herd size to oil is not significant at the 90% level. However, in figure 6,

after the break, oil has a clear, significant negative impact on herd size. Furthermore, the oil

shocks correspond to significant increases in the corn farm price after the break, consistent

with the results of Carter et al. (2017) and Smith (2019). As expected, the impulse response

function for the own-price and herd size on itself is unchanged before and after the break.

This suggests that the adoption of the VEETC, RFS-1, and RFS-2 established a novel link

between cattle and energy markets. A sudden increase in the price of oil drives down the

herd size in the short run. In addition, according to figure 6, a positive corn price shock has

a stronger (at the mean) and more persistent negative impact on herd size after the break

than before it, lasting more than 8 periods (4 years), while before the break the confidence

bands cross the vertical axis at about 4 periods, or around two years. For robustness, we

include results from specifying an alternative break date of 2007 – the implementation of the

RFS-2. The results using this alternative break date are consistent with the results in figure

6. In addition, we also include results from using the alternative aggregate economic activity

measure, WPI, proposed by Hamilton in figure 12 in the appendix. Using this alternative

measure of aggregate demand, we still observe a fundamental change between U.S. herd

size, corn, and energy. This supports our argument that U.S. biofuel policy, especially with

regard to corn for ethanol production, more closely linked cattle, corn, and energy markets,

creating a new potential source of volatility for beef producers13.

13To address comments from colleagues, we also include in the appendix IRFs generated from the data
excluding COVID-19 observations to balance the split sample analysis. Figure 13 visualizes these results
using REA as the economic activity indicator. The results support our headline findings.
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Figure 6: Cholesky Impulse Response Functions, 2001-2022
Source: Author calculations based on data sourced from NASS and AMS 2022

Note: IRFs are generated from the estimated B matrix for 20 steps ahead, i.e. 20 six month increments or
10 years total. Light Grey 95% Confidence bands and dark grey 68% Confidence bands are generated using
wild bootstrap method with 2000 runs. The analytical IRF estimate appears as the dark blue dotted line,

while the dashed purple and black lines represent the bootstrapped median and means respectively.
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From our estimated SVAR model, we calculate counterfactuals with and without shocks

to corn and energy prices. We present such counterfactuals in figure 7 for the beef herd

series, illustrating how the beef herd cycle would have evolved with and without the effects

of shocks to crude oil and corn (the primary feed input). Corn and crude oil have a significant

impact on beef herd beginning in the early 2000s. In figure 7, the first panel shows that high

corn prices exacerbated the downturn in the cattle cycle between 2010 and 2015. Similarly,

the second panel shows the historical decomposition for oil on herd size over our sample time

period. Beginning in the mid-2000s, the observed herd size is above the counterfactual series,

implying that the beef herd benefited from depressed oil prices (recall figure 1)–which lowered

industry production costs–until the mid-2000, when the U.S. government enacted significant

policies to promote biofuel production and adoption. Subsequently, the counterfactual herd

series runs substantially higher than the observed series implying that the the spike in corn

prices during the 2000s lowered the U.S. herd size, as cattle producers faced higher prices

for the corn they used in production.
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Figure 7: Counterfactual Plots with and without the Shocks from Corn and Oil
Source: Author calculations based on data sourced from NASS 2022

Note: Counterfactual constructed from Recursive Identification Results

5.4 Robustness Check: Distance Covariance

The next method we utilize is the Distance Covariance Method (DCM) (Szekely et al.,

2007). The DCM relaxes the restrictions placed on our error matrix, B, so that it is no

longer assumed to take a Cholesky lower-triangular form. Edelman et al. (2020) provides a

simplified treatment of the motivation behind the DCM. Formally, the DCM is a powerful

measure of dependence between sets of multivariate random variables, and hence, can be

applied to detect arbitrary types of non-linear associations between variables. Therefore,
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under this formulation, B is completely unrestricted:



b1,1 b1,2 b1,3 b1,4 b1,5

b2,1 b2,2 b2,3 b2,4 b2,5

b3,1 b3,2 b3,3 b3,4 b3,5

b4,1 b4,2 b4,3 b4,4 b4,5

b4,1 b4,2 b4,3 b4,4 b5,5


(16)

Matteson and Tsay (2013) provide a numerical algorithm for calculating each element of B

in (12). We re-estimate model using the DCM and generate a new set of impulse response

functions post-2000 era in figure 8. In terms of sign and mean response, the DCM impulse

responses in panels 2 and 3 are consistent with the results generated under the Recursive

Method. In panel 1, the impulse response, although now not significant at the 90% level–

but still significant at the 68% level–mirrors the positive relationship between energy prices

and corn prices observed by Carter et al. (2017). Furthermore, the herd response to a 1%

increase in the farm price of corn is virtually identical to our results under the Cholesky

restrictions. These results imply that the shift in U.S. energy policy towards supporting

biofuels contributed to the significant negative relationship we observe between feed prices

and herd size.
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Figure 8: DCM Impulse Response Functions, 2001-2022
Source: Author calculations based on data sourced from NASS and AMS 2022

Note: IRFs are generated from the estimated B matrix for 20 steps ahead, i.e. 20 six month increments or
10 years total. Light Grey 95% Confidence bands and dark grey 68% Confidence bands are generated using
wild bootstrap method with 2000 runs. The analytical IRF estimate appears as the dark blue dotted line,

while the dashed purple and black lines represent the bootstrapped median and means respectively.
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5.5 Structural Break: Net Returns

Finally, we consider the impacts to producer profitability using our simulated returns

series. Following the Bai-Perron procedure, we identify a break point of October 2004 on the

net returns to cattle Bai and Perron (2003). We then test the date of January 2006, the first

month of the year after the RFS was passed. Since 2006, the average simulated return per

head to steer producers at representative Kansas feedlots decreased by approximately $59.5

per head. Figure 9 shows the deflated series of net returns along with the de-seasonalized

average value of the series. We interpret this finding to suggest that, in addition to making

the domestic beef herd more sensitive to crude oil and corn price shocks, U.S. biofuel policy

also adversely impacted cattle producer returns.
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Figure 9: Deflated Net Returns $ per Head
Author calculations based on data sourced from KSU and LMIC 2020
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6 Conclusions

By expanding ethanol production, U.S. biofuel policy increased the demand for feed

grains (especially corn), raising prices. While these policies generated positive welfare ben-

efits for grain producers, they also created new demand-side competitors for feed inputs.

Cattle producers, who use corn as a major input component, now must contend with the

consequences these policy shocks. Our results confirm that–post-RFS-2 implementation–

sudden, unexpected changes to the prices of corn and oil pressured producers to sell off a

portion of their herds. In addition, U.S. biofuel policies had both economically and statis-

tically significant negative impacts on the net returns to cattle producers. Although federal

officials focus on the beneficial impacts that biofuel policies have on some U.S. agricultural

interests, it is important to point out that market interventions carry inevitable downstream

consequences even within the agricultural sector.
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Figure 10: Cholesky Impulse Response Functions 1983-2006 (pre-RFS-2)
Source: Author calculations based on data sourced from NASS and AMS 2022

Note: IRFs are generated from the estimated B matrix for 20 steps ahead, i.e. 20 six month increments or
10 years total. Light Grey 95% Confidence bands and dark grey 68% Confidence bands are generated using
wild bootstrap method with 2000 runs. The analytical IRF estimate appears as the dark blue dotted line,

while the dashed purple and black lines represent the bootstrapped median and means respectively.
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Figure 11: Cholesky Impulse Response Functions 2007-2022 (post-RFS-2)
Source: Author calculations based on data sourced from NASS and AMS 2022

Note: IRFs are generated from the estimated B matrix for 20 steps ahead, i.e. 20 six month increments or
10 years total. Light Grey 95% Confidence bands and dark grey 68% Confidence bands are generated using
wild bootstrap method with 2000 runs. The analytical IRF estimate appears as the dark blue dotted line,

while the dashed purple and black lines represent the bootstrapped median and means respectively.
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Figure 12: Cholesky Impulse Response Functions using WPI 2001-2022
Source: Author calculations based on data sourced from NASS and AMS 2022

Note: IRFs are generated from the estimated B matrix for 20 steps ahead, i.e. 20 six month increments or
10 years total. Light Grey 95% Confidence bands and dark grey 68% Confidence bands are generated using
wild bootstrap method with 2000 runs. The analytical IRF estimate appears as the dark blue dotted line,

while the dashed purple and black lines represent the bootstrapped median and means respectively.
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Figure 13: Cholesky Impulse Response Functions using REA 2001-2019
Source: Author calculations based on data sourced from NASS and AMS 2022

Note: IRFs are generated from the estimated B matrix for 20 steps ahead, i.e. 20 six month increments or
10 years total. Light Grey 95% Confidence bands and dark grey 68% Confidence bands are generated using
wild bootstrap method with 2000 runs. The analytical IRF estimate appears as the dark blue dotted line,

while the dashed purple and black lines represent the bootstrapped median and means respectively.
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Table 4: p-values for Autocorrelation Tests

lags pt.asymptotic pt.adjusted BG ES
1 0 0 0.250 0.368
2 0.008 0.006 0.035 0.090
3 0.084 0.064 0.041 0.103
4 0.139 0.096 0.020 0.053
5 0.129 0.074 0.011 0.024
6 0.238 0.135 0.014 0.025
7 0.457 0.284 0.017 0.016
8 0.561 0.343 0.020 0.024
9 0.645 0.385 0.019 0.024
10 0.714 0.415 0.032 0.030
11 0.856 0.579 0.045 0.049
12 0.915 0.655 0.051 0.073
13 0.961 0.753 0.082 0.302
14 0.952 0.655 0.101
15 0.862 0.333 0.350
16 0.894 0.336 0.696
17 0.907 0.304 0.918
18 0.964 0.446 0.988
19 0.986 0.561 0.999
20 0.991 0.546 1.000
21 0.998 0.683 1.000
22 0.997 0.588 1
23 0.999 0.646 1
24 1.000 0.719 1
25 1.000 0.700 1
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